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Background

The complexity of cellular networks makes analysis of their dynamic behavior difficult
without the use of computational models. Simulation algorithms implement either
ordinary differential equations or Petri net state machines, which are fundamentally
different methods of determining network behavior.

Ordinary Differential Equations

* Primary input/output relationship
represented by transfer function

* Parameterization (e.g., knowledge of reaction
rates) required

* Existence of several solution algorithms
vielding approximate results

Petri Nets

* Primary input/output relationship
represented by abstract state machine

* No parameterization required

* Execution algorithm aims to simulate
signaling mechanisms of real biological
systems

* Model checking verifies experimental data
and refines simulation algorithms
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Figure 1 Petri net representation of the Trp regulatory network.
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Figure 2 Computational model-checking.

Problem

* Metabolic and signaling pathways in cell networks usually studied independently;

doesn’t allow for dynamic interaction analysis

* Petri net algorithms for metabolic signaling pathways largely unexplored
* Understanding of metabolic-signaling pathways needed for cancer research and drug

development

General Solution

* Modification of our existing Petri net/ODE simulation program, PetriBug, to include
graphical user interface (GUI) network modification capabilities
e Simulation of our metabolic-signaling network’s behavior under different initial

conditions and perturbations

e Simulations allow for hypothesis generation for further lab experiments and
development of a Petri net algorithm for metabolic signaling networks
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Figure 3 The metabolic-signaling network which we analysed.

Figure 4 The PetriBug GUI.
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Figure 5 Visualization of the behavior of phosphorylated AKT and MAPK1,2, which are involved in the network’s signaling pathways, over a period of 120 minutes given different initial concentrations

of HK2 and GLUT4, which are involved in the network’s metabolic pathways.
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Figure 6 Visualization of the behavior of G6P and Lactate, which are involved in the network’s
metabolic pathways, over a period of 120 minutes given different initial concentrations of AKT
and MAPK1,2, which are involved in the network’s signaling pathways.

Analysis

The simulations focused on two sets of molecules involved in metabolic and signaling
pathways implicated in causing cancer and were run over a course of 120 minutes.

Simulation 1

* Molecules analysed: HK2 and GLUT4 (metabolic); AKT and MAPK1,2 (signaling)

* Behavior of phosphorylated MAPK1,2 (MAPK1,2*) not affected by changes to either
HK2 or GLUT4 initial concentrations

* Production of phosphorylated AKT (AKT*) dampened by increase of HK2 initial
concentration from 1 mol to 5 mol; GLUT4 levels did not affect AKT* behavior

* Hypothesis: HK2 levels on metabolic end of the network directly proportional to AKT
levels on signaling end of the network

Simulation 2

* Molecules analysed: G6P and Lactate (metabolic); AKT and MAPK1,2 (signaling)

* Given 5 mol AKT and MAPK1,2 initial concentrations, Lactate production steadily rises
while G6P levels initially sink before slowly rising

* Very low AKT initial concentration results in G6P levels sinking to O over time

* Very low MAPK1,2 initial concentration results in sinusoidal G6P behavior and very slow
decrease in Lactate over time

* Hypothesis: AKT levels on signaling end of the network directly proportional to G6P
levels on metabolic end of the network; MAPK1,2 levels directly proportional to Lactate
levels

Future Research

The purpose of this investigation was to generate hypotheses about metabolic-signaling
networks via simulation. This work must be followed up by laboratory experiment to
confirm simulation results and progress toward developing a Petri net simulation
algorithm for metabolic-signaling networks, an area of research still in its infancy.

There is room for improvement within the PetriBug code base as well. A Petri net
simulator will be implemented into this program in conjunction with progressing
research in metabolic-signaling network analysis. This tool would then be released for
use by the research community. The GUI of the program would benefit from the
implementation of other user-friendly features, such as the ability to sort molecules and
reactions by name to reduce search time, the addition of plot-editing capabilities (e.g.
resolution modification), and the ability to run multiple simulations in series.
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