
A Survey and Exploration of Relation Extraction in Active

Learning Systems

Alen Lukic

Language Technologies Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

alukic@cs.cmu.edu

Abstract

The reliable recognition and extrac-
tion of semantic relations between enti-
ties is important to many applications
in the domain of natural language pro-
cessing and information retrieval, such
as search engines and question-answering
systems. In this survey I summarize the
primary relation extraction approaches
presented in the literature, particularly
focusing on weakly supervised bootstrap
methods. I offer a critique and discuss
possible improvements of the different
methodologies used at various points in
the relation extraction process. Finally,
I discuss an extension of relation extrac-
tion to an active, unsupervised ontology-
learning system in the context of a con-
figuration space exploration framework.

1 Introduction

A vast amount of unstructured and semi-
structured text information exists on the Web
in a growing number of forms, including elec-
tronic books, academic journals, news articles,
blogs and social media feeds, and e-mail commu-
nications. In order to perform any sort of compu-
tational analysis on such corpora, relevant docu-
ments must be retrieved, and information of inter-
est must be reliably recognized, extracted, anno-
tated and stored. Many methods exist for gener-
ating different types of annotations over sections
of unstructured text, such as part-of-speech tag-
ging, named entity recognition, relation extrac-
tion, and shallow parsing. This survey concen-

trates on relation extraction: the process of rec-
ognizing relationships between sets of entities in
unstructured or semi-structured text.

A relation is defined as a tuple t = (e1, ..., en),
where the tuple elements are the entities which
participate in the relation. The following is an
example of a binary relation which expresses that
Subra Suresh is the president of Carnegie Mel-
lon University: president-of(Subra Suresh, CMU)
- another common notation is (Subra Suresh,
president-of, CMU). Higher-order relations are
also possible. For example, a ternary relation
which expresses that Subra Suresh became the
president of Carnegie Mellon in February 2013
is became-president(Subra Suresh, CMU, Febru-
ary 2013). Most commonly, relation extraction
approaches described in the literature focus on
binary relations.

The approaches of interest in this survey are
bootstrap seeding methods, semi-supervised rela-
tion classification, and active feedback loops de-
signed for an iteratively improving extraction pro-
cess. In Section 2, I will briefly discuss the history
of relation extraction up to the emergence of these
techniques.

In Section 3, I will compare and con-
trast approaches which fundamentally implement
Yarowsky’s algorithm, which I will summarize in
Section 2 [?]. I will discuss any pre-processing
which the system performs on either the seeds
or the corpus of interest, compare the instance
extraction methodologies of the systems, analyze
the systems’ fitness metrics for learned relation
patterns (where applicable) and extracted rela-
tion instances, assess whether the system utilizes
a feedback loop at any point in the extraction

1

process and, if applicable, how this affects system
performance.

The purpose of this survey is to lay the
groundwork for the incorporation of an appropri-
ate and effective relation extraction approach in
an active, unsupervised ontology-learning system
with configurable component parameters. I will
describe this system and its framework in Section
4 and discuss how to incorporate my conclusions
from Section 3 into this system.

2 Previous Work

Many earlier approaches modeled relation extrac-
tion as a supervised classification problem. A
binary classifier, such as Naive Bayes, Logistic
Regression, Voted Perceptron or Support Vector
Machines (SVM), is trained on labeled training
instances and used to classify potential relation
instances. Approaches vary by how the feature
vectors used in classification are constructed.

One feature selection technique involves ex-
tracting syntactic and semantic features from the
text surrounding the entities which participate in
the relation. Examples of syntactic features are
the entities themselves, the sequence of words be-
tween the entities, and the path in the parse tree
which contains the entities. An example of a se-
mantic feature is the dependency tree path be-
tween the entities. Zhao & Grishman utilize these
features in an SVM model with a polynomial ker-
nel for the purpose of relation extraction [2], while
GuoDong et. al. do the same but with a linear
kernel [3].

The primary limitation of using semantic and
syntactic features is that feature selection is
heuristic and often suboptimal. The use of some
features degrades the performance of the classi-
fier, and selecting an optimal set of features is
difficult. An approach which resolves this diffi-
culty involves the use of string kernels in SVM
classifiers which implicitly explore the full rich-
ness of the input representation of the text in a
higher-dimensional space. The basis of this ap-
proach is the substring kernel described in the
paper by Lodhi et. al. [4]. This kernel computes
the similarity between two strings by determining
the number of common subsequences they share.
However, the computation may be extended to
the general case of computing the structural sim-
ilarity between any two objects, such as word se-
quences and parse trees. Bunescu & Mooney use

this kernel by computing the similarity between
the word sequences before, between, and following
the two entities; the kernel is simply the sum of
these similarities. Using an SVM classifier, they
achieve both superior precision and recall over an
existing rule-based method on a data set of MED-
LINE abstracts [5].

Zelenko et. al. apply the aforementioned ker-
nel to shallow parse subtrees derived from a shal-
low parse of the sentence containing the two po-
tentially related entities. The similarity metric
is computed by calculating the total number at-
tributes shared by subtrees which cover both of
the entities [6]. Culotta & Sorensen use a sim-
ilar approach but utilize dependency parse trees
instead of shallow parse trees, arguing that the
richer structure augments performance [7]. These
kernel computations are computationally expen-
sive at O(mn3) complexity, given that m and n
are the number of nodes in the parse trees which
are being compared. Bunescu & Mooney argue
that comparing the shortest paths between the
entities in the dependency tree is sufficient, as this
path contains sufficient information to encode the
relation between them. Not only is the computa-
tional complexity of this kernel linear in the size of
the tree nodes, but in fact, this approach outper-
forms the shallow and dependency parse kernels
in terms of recall and achieves similar precision
[8].

Supervised methods are largely limited by the
availability of and expense of obtaining reliable
labeled training data. Semi-supervised bootstrap
methods seek to overcome this problem. Boot-
strapping in the context of relation extraction ap-
plies the idea behind Yarowsky’s algorithm. On
a high level, the algorithm operates as follows:

1. Train a classifier with an initial seed set.

2. Extract new instances and label them with
the classifier.

3. Add positive instances which meet a requi-
site confidence threshold to the training set.

4. Repeat 1 - 3 until some defined convergence
criterion is met.

In Section 3, I will analyze the various compo-
nents of several relation extraction systems which
effectively implement Yarowsky’s algorithm. In
particular, I will discuss the following works:

1. Pantel & Pennachiotti, 2006 (Espresso) [9]

2

2. Rozenfeld & Feldman, 2008 (Self-
Supervised Relation Extraction System)
[10]

3. Carlson, Betteridge, Wang, Hruschka Jr.,
& Mitchell, 2010 (Meta Bootstrap Learner)
[11]

Note that for the systems which do not uti-
lize an active feedback loop, I consider these sys-
tems to implement a special case of Yarowsky’s
algorithm whose convergence criterion is a single
repetition of steps 1 - 3.

3 Semi-Supervised Boot-

strap Approaches

3.1 Pre-Processing

3.1.1 Espresso

Espresso utilizes the pattern-learning algorithm
described in the work by Ravichandran and Hovy
in order to induce a set of generic patterns for
instance extraction from the seed relations [12].
The patterns are ranked by a reliability metric
and only the top k patterns are selected, where k
is one greater than the number of patterns from
the previous iteration. New statistical evidence
may result in patterns being discarded.

3.1.2 Self-Supervised Relation Extraction
System (SRES)

SRES utilizes a set of target relation definitions
as its input. The Sentence Gatherer system com-
ponent downloads a large number of web docu-
ments which may contain relations of interest us-
ing a WordNet-augmented version of its target
relation set (the authors do not specify how; I
will assume a search engine is used). Then, for
each target relation, the Seed Gatherer sorts each
sentence in these documents into a positive and
negative set by checking the entities and context
words in each sentence against the relation defi-
nition. If the relation is defined to be symmetric,
it switches the order of the entities in the sen-
tence and places that variant of the sentence into
the relation’s positive set as well; otherwise, if the
relation is antisymmetric, it places that sentence
variant into the negative set.

Next, the Pattern Learner generates a set of
generic patterns by using a dynamic program-
ming optimal string alignment algorithm for each
pair of sentences in each relation’s positive set.
This produces a very large amount of patterns,
which are filtered according to a relevance heuris-
tic (discussed later).

3.1.3 Meta Bootstrap Learner (MBL)

MBL is a meta-algorithm which uses the results
of two component algorithms, Coupled Pattern
Learner and Coupled SEAL (discussed later).
The input to both algorithms is a seed set of re-
lation patterns and instances. Neither of these
algorithms perform any sort of pre-processing on
the corpus or the seed set.

3.1.4 Discussion

The extent of the pre-processing which a relation
extraction system performs plays a large role in
its time complexity and accuracy. MBL clearly
outperforms the other 2 systems in this phase;
the system avoids expending any time on pre-
processing altogether and also avoids introducing
error to the system.

Assume that r is both the number of seed re-
lations given as input to Espresso and the num-
ber of target relations given as input to SRES.
Assume that s is the total number of sentences
retrieved by a search engine for both systems in
pre-processing, and that n is the average sentence
length. Based on the description of the pattern-
learning algorithm which Espresso employs and
using the assumption that Ukkonen’s suffix tree
construction algorithm is used, the time complex-
ity of Espresso’s preprocessing phase is:

O(rns)

Assume p is the number of unfiltered patterns
generated by SRES’s Pattern Learner. Using
the assumption that the Smith-Waterman string
alignment algorithm is used, the time complexity
of SRES’s pre-processing phase is:

O(rs + n2s2)

Assume that s � r. The above complexities
can then be reduced to O(ns) and O(n2s2 + p),
respectively. This confirms the intuition that
SRES’s pre-processing stage is more expensive
than Espresso’s.

3

SRES also has a higher risk of introducing er-
ror in this phase of the relation extraction process
than Espresso does. Although both systems use
scoring metrics (described later) for their induced
patterns, Espresso’s pattern set can change on a
later iteration of the system based on new sta-
tistical evidence, thus potentially removing any
incorrect induced patterns. SRES does not uti-
lize a feedback system, and hence any erroneous
patterns induced during pre-processing will per-
manently affect the end system performance.

3.2 Instance Extraction

3.2.1 Espresso

Espresso’s instance extraction algorithm is
straightforward. The system walks the corpus
and extracts instances I which match any of the
patterns in P . These instances are filtered by
calculating a reliability score for each of them
and then selecting the top k instances (discussed
later).

3.2.2 SRES

SRES utilizes the shallow parser from the
OpenNLP package in order to identify noun
phrases in sentences in the corpus and attempts
to match them to each of the learned patterns.

3.2.3 MBL

The first phase of the Coupled Pattern Learner
(CPL), an algorithm built specifically for MBL,
extracts new relations based on recently retained
patterns and instances (in the first iteration, it
uses the seed patterns/instances) using a part-of-
speech tagger. Relation instances are extracted if
they match a recently promoted pattern; relation
patterns are extracted if both arguments of a re-
cently promoted instance are found in a sentence
and the word sequence between them contains five
or fewer tokens.

MBL also utilizes a modified version of SEAL
[13], an algorithm for extracting wrappers spe-
cific to semi-structured documents such as HTML
pages, called Coupled SEAL (CSEAL). The first
phase of Coupled SEAL passes recently promoted
relation instances as seeds to the existing SEAL
algorithm in order to learn wrappers specific to
each HTML page. These learned wrappers are

then used in order to extract new relation in-
stances from the HTML page.

The results of both CPL and CEAL are com-
bined and filtered (discussed later).

3.2.4 Discussion

Notably, all three systems utilize shallow match-
ing techniques for extracting both relation pat-
terns and relation instances.

The authors do not specify which pattern-
matching algorithm Espresso utilizes. Assume
there are k patterns of average length m and d
documents in the corpus, each containing s sen-
tences average length n. I will assume that a
pre-trained linear-time shallow parser and linear-
time string-matching algorithm such as Rabin-
Karp is utilized, whose average-case complexity
is O(m + n). The complexity of parsing a sen-
tence is O(n), as is finding the noun phrases.
The complexity of pattern-matching for each pat-
tern, again assuming the Rabin-Karp algorithm
is used, is O(m + n). Hence, the average-case
complexity of SRES’s instance extraction phase
is O(ds(2n + k(m + n))), or, simplified:

O(dsk(m + n)))

Since the authors explicitly state that SRES
utilizes OpenNLP’s pre-trained shallow parser, I
assume that SRES extracts relation instances in
the same manner as Espresso. Hence, the com-
plexity of its instance extraction phase matches
that of Espresso.

For MBL, the complexity of the instance ex-
traction phase will be the summation of the
complexity of its individual algorithms. I as-
sume that CPL uses a pre-trained part-of-speech
tagger and, as such, that the complexity of
POS tagging is linear in the size of each sen-
tence. Again, I assume Rabin-Karp is the string-
matching algorithm used for pattern-matching in
sentences. As such, the average-case complexity
of CPL’s instance extraction phase is equivalent
to Espresso’s.

CSEAL first calls the original SEAL algorithm
in order to learn the wrappers for each HTML
page. Assume r seeds of average length q are
passed as input to SEAL, that there are d HTML
pages and that each HTML page has, on average,
s sentences of average length n. The complex-
ity of SEAL is O(dsr(q + n)). For brevity, the

4

asymptotic complexity analysis of the SEAL al-
gorithm is omitted, but may be derived from the
original paper [14]. Once SEAL has learned the
wrappers, CSEAL performs instance extraction
on each page using the wrappers. Assuming w
wrappers are extracted and a shallow approach
similar to CPL is used, the complexity of the ex-
traction is O(dsw(q+n)). The average-case com-
plexity of CSEAL is then O(ds(w+r)(q+n)), and
the average-case complexity of MBL’s instance
extraction phase as a whole is simply the com-
bination of CPL’s and CSEAL’s complexities:

O(ds(k(m + n) + (w + r)(q + n))

On the whole, the complexity of the instance
extraction methods is comparable; in practice,
MBL’s component algorithms could run in par-
allel, thereby effectively reducing MBL’s instance
extraction complexity to that of Espresso and
SRES.

MBL utilizes information from previous
phases of the extraction algorithm to extract new
patterns and instances; Espresso utilizes similar
information in its pre-processing phase. SRES’s
lack of a feedback loop quashes its ability to use
new information in order to modify its extraction
scheme and pattern/instance sets.

3.3 Confidence Estimation

3.3.1 Espresso

Espresso’s confidence estimates for both patterns
(P) and relation instances (I) depend on the dis-
counted pointwise mutual information defined be-
tween each instance i = {x, y} ∈ I and pattern
p ∈ P :

pmi(i, p) = log
|x, p, y|

|x, ∗, y||∗, p, ∗|
d

The discount factor d offsets the bias of point-
wise mutual information toward rare events; its
definition, along with further discussion, may be
found in the original paper [15].

The confidence (or, in the original terminol-
ogy, reliability) of each pattern p is then defined
as

rπ(p) =
∑
i∈I

pmi(i,p)
maxpmi

∗ rl(i)
|I|

and the confidence of each instance i is defined
as

rl(i) =
∑
p∈P

pmi(i,p)
maxpmi

∗ rπ(p)

|P |

Notice that the two metrics are recursively de-
fined. The base case is the confidence score of
each instance in the initial seed set, which is de-
fined as 1. The value maxpmi is defined as the
maximum pointwise mutual information score be-
tween all pairs of patterns and instances.

The confidence score of each pattern and in-
stance is recalculated on each iteration, and the
size of both P and I grows by 1 on each iteration.
This guarantees the addition of at least one new
instance and pattern per iteration. Note that pat-
terns and instances from previous iterations may
also be discarded if their recomputed confidence
scores are too low.

3.3.2 SRES

The learned patterns are pruned by removing
stopwords from all patterns and then using Word-
Net to generate a set of relevant words for each
target relation by following all links from the
predicate to a depth of 2. All patterns which do
not contain one of the relevant words are removed.

After pruning, each pattern p is assigned a
score. Define Ps as the set of instances in the
positive set which p matches, and Pn as the set
of instances in the negative set which p matches.
Then, the score is defined as

score(p) =
|Ps|

(|Pn|+ 1)2

All patterns with a score less than 6 are au-
tomatically discarded. At most, the top 300 re-
maining patterns are retained.

Instances are assessed using a Bayesian bi-
nary regression classifier. A set of feature vec-
tors Fe,Pe composed from corpus statistics about
the instance e and each of its extracting patterns
p ∈ Pe is constructed for each instance. Full de-
tails regarding the features which compose these
vectors can be found in section 3.3 of the original
paper.

The classifier is trained by extracting in-
stances from a small subset of the corpus using
a single gold-standard pattern. The extracted in-
stances are manually assigned binary correctness
labels.

5

Define the trained classifier as L(f). The
score of an extracted instance e is defined sim-
ply as the maximum value computed by applying
the classification function to each feature vector
fe,p ∈ Fe,Pe ; that is:

score(e) = argmax(L(fe,p) | fe,p ∈ Fe,Pe)

Finally, all instances are passed through a
named entity recognition (NER) filter. The NER
determines the entity type for each of the argu-
ments in the relation instance. If the entity types
do not match those indicated by the extracting
patterns, the instance is discarded.

3.3.3 MBL

MBL depends on mutual exclusion between pat-
terns and type checking of instances in order to
assign confidence estimates to patterns and in-
stances. The input to the relation extraction sys-
tem defines a set of patterns which are mutually
exclusive with each other. Define the set of all
patterns for which mutual exclusivity with a pat-
tern p holds as Ep. Furthermore, the argument
types of all candidate instances must match those
of the extracting pattern. Define the set of all in-
stances whose argument types do not match those
of i as Ei.

The CPL algorithm filters both extracted pat-
terns and instances. Call the set of recently pro-
moted and candidate patterns Pp and Pc, respec-
tively, and the set of recently promoted and can-
didate instances Ip and Ic, respectively. Define
count(i, p) as the frequency of co-occurrence be-
tween instance i and pattern p in the corpus (that
is, the number of times p extracts i). A candidate
instance ic ∈ Ic is retained if

∃{pp ∈ Pp | count(ic, pp) ≥ 3 ∗ count(ic, pe)}

That is, there must exist some recently pro-
moted pattern pp which co-occurs at least three
times more frequently with ic than do all of its
mutually exclusive patterns. Candidate patterns
are similarly filtered. A candidate pattern pc ∈ Pc
is retained if

∃{ip ∈ Ip | count(ip, pc) ≥ 3 ∗ count(ie, pc)}

After filtering, the remaining candidate pat-
terns and instances are ranked. Instances are

ranked simply by the number of recently pro-
moted patterns they co-occur with; that is

rank(ic) ∝ |count(ic, pp) > 0,∀pp ∈ Pp|

Patterns are ranked using an estimate of their
precision, defined as

precision(pc) =

∑
ic∈Ic count(ic, pc)

count(∗, p)

At most, CPL promotes 100 instances and 5
patterns based on the rankings. Patterns and in-
stances must co-occur with at least 2 promoted
instances and patterns, respectively, to be pro-
moted, and must meet mutual exclusion and type-
checking constraints.

CSEAL similarly ranks extracted instances by
the number of unfiltered wrappers w ∈ W which
extracted them; that is

rank(ic) ∝ |count(ic, w) > 0,∀w ∈ W |

Like CPL, CSEAL ensures mutual exclusion
and type constraints are met for each candidate
before promoting it, and at most 100 candidate
relations are promoted.

MBL utilizes a very simple heuristic: any re-
lation or instance promoted by both CPL and
CSEAL is promoted by MBL.

3.3.4 Discussion

The most computationally expensive part of
Espresso’s confidence estimation phase is the cal-
culation of the maximum PMI value. In fact, in
order to determine this value, the system must
calculate the PMI between every currently re-
tained instance and pattern pair - these values
may be stored to avoid unnecessary recalculation.
The complexity of this task is O(|P ||I|). This
is also the asymptotic complexity of the entire
phase, as the calculation of each confidence score
is O(|P |) and O(|I|) for patterns and instances,
respectively, and the rank calculation complexity
is O(|P | log |P |) and O(|I| log |I|), and these are
lower-order terms.

The complexity of SRES’s confidence estima-
tion phase is more difficult to determine. The
determination of relevant words for each pattern
p will depend on how many WordNet nodes for
each word in the pattern are within a distance
of at most 2 for that word. For simplicity, let’s

6

assume that on average there exist O(|p|) such
nodes and that the average length of each pattern
is m. Then the complexity of the pruning state
is O(|P ||p|m). Next, the remaining patterns are
assigned a score and ranked. Each pattern must
be checked against each sentence in the target re-
lation’s positive and negative sets. If there are
s total sentences of average length n, then the
complexity of scoring and ranking is O(|P |sn).
Following scoring, a Bayesian binary regression
classifier is trained on instances extracted from a
subset of the corpus using a single pattern. As-
suming e instances are extracted, then the com-
plexity of training the classifier is O(e). If I is
the set of instances extracted by SRES in the
instance extraction phase, then prediction takes
O(|I|) time. Assume |I| � e. Then the to-
tal complexity of SRES’s confidence estimation
phase is O(|P |(|p|m + sn) + |I|).

3.4 Feedback System

3.4.1 Espresso

Espresso’s feedback system is manifested in selec-
tion and expansion strategies. The system grows
the size of its instance and pattern sets based
on the current iteration. Furthermore, the con-
fidence estimation score of each pattern and in-
stance is recalculated on each iteration. This cre-
ates a dynamic set of instances and patterns in
which an element may be dropped on any given
iteration, depending on the results of the previous
iteration.

The number of instances extracted on a par-
ticular information may provide too little statis-
tical evidence to ensure valid pattern discovery
in the next iteration, especially in small corpora.
If this occurs, Espresso employs two instance ex-
pansion strategies: web expansion and syntactic
expansion.

In web expansion, for each i = {x, y} ∈ I,
and for each pattern p = {X, t, Y } ∈ P , where
t is the text which connects the two entities in
the relation, Espresso issues a query to Google of
the form x t ∗. The results are then added to the
candidate instances for the current iteration and
filtered as usual.

In syntactic expansion, new instances are cre-
ated by extracting sub-expressions from the text
which connects the two entities in the relation and
then re-connecting the entities with these subex-
pressions.

3.4.2 SRES

SRES runs in a single iteration and therefore does
not utilize a feedback strategy.

3.4.3 MBL

The feedback system of MBL is seen in the re-
lationship between its instance extraction phase
and its promotion phase. Relation instances
which match a pattern promoted in the previ-
ous iteration are extracted from the corpus in the
current iteration, and vice-versa. As such, each
iteration feeds into the next iteration and results
in a monotonically increasing set of relation and
pattern instances.

3.4.4 Discussion

The feedback strategy in the Espresso system
does not add any additional complexity to the
system beyond what has already been discussed
because it is an inextricable part of Espresso’s
confidence estimation phase. The same holds true
for MBL.

Espresso’s feedback strategy is similar to
MBL’s in the sense that the final set of pattern
and relation instances considered and selected in
the current iteration depends on information from
the previous iteration. Espresso makes decisions
about which relations and patterns to retain at
the beginning of each iteration by ranking the in-
stances by their confidence estimates. The confi-
dence estimates are affected by the introduction
of new instances on every iteration. MBL de-
cides which instances and patterns to extract on
the current iteration based on the ones added to
the set on the previous iteration; only relations
matching a pattern promoted in the previous it-
eration, and vice-versa, are extracted in the new
iteration.

Espresso and MBL fundamentally diverge in
their retention policies, however. On each iter-
ation, Espresso only retains k patterns with the
highest reliability scores, and k only grows by 1
on each iteration. This means that, unless only
one new pattern is extracted per iteration, then
there is a probability that patterns retained in
previous iterations will be dropped in the current
iteration. MBL does not ever drop patterns which
it decides to retain. Hence, while the pattern set
in each system increases monotonically, Espresso
utilizes statistical evidence global to all iterations

7

to determine which patterns to retain; no pattern
is exempt from the possibility of obsoletion. In
contrast, MBL utilizes only local statistical in-
formation (i.e. from the previous iteration) to
determine pattern retention and therefore never
discards any patterns which it previously decided
to retain.

Furthermore, the feedback strategy of the two
systems also determines their respective instance
extraction processes. Espresso extracts relation
instances from the corpus which match any cur-
rently existing patterns. However, as all patterns
from previous iterations will not extract new in-
stances, this limits the scope of the extraction
phase to all patterns retained from the previous
iteration. This will be a subset of all of the new
patterns extracted in the previous iteration be-
cause Espresso’s retention policy may lead to new
patterns being discarded before they are ever used
to extract relation instances. On the other hand,
since MBL does not ever discard patterns, the
system uses all of the patterns retained in the
previous iteration to extract new instances.

This analysis suggests that Espresso takes a
more statistically robust approach whereas MBL
has a higher extractive power. These properties
correspond to precision and recall, respectively.
SRES depends on a single iteration of its extrac-
tion pipeline to extract all valid patterns and in-
stances. The effectiveness of these approaches will
be discussed in the following section.

3.5 Performance Analysis

This section will describe and compare the per-
formance of each system. For each system, I will
indicate on which corpora the system was evalu-
ated and to what other systems it was compared.
I will also indicate the system’s average precision
(AP) and recall (AR), as well as its precision (PR)
and recall ratio (RR) to the best-performing com-
parison system.

3.5.1 Espresso

• Corpora: TREC-91, CHEM2

• Compared Systems: RH02 [12], PR04
[15]

Espresso Performance

Corpus AP PR AR RR
TREC-9 0.673 3.11 – 5.05
CHEM 0.772 2.11 – 3.11

3.5.2 SRES

• Corpora: Web

• Compared Systems: KnowItAll [16]

The authors of SRES do not describe explicit
performance results, so I will simply include the
performance charts presented in the paper.

1http://trec.nist.gov/data/qa/t9 qadata.html
2http://wps.prenhall.com/esm brown chemistry 9/

8

3.5.3 MBL

• Corpora: Web

• Compared Systems: UPL [13], CPL,
SEAL [14], CSEAL, MBL

MBL Performance
Corpus AP PR AR RR
Web 0.95 1.04 – 1.89

3.5.4 Discussion

All three systems outperform their respective
comparison systems. In terms of raw precision,
MBL outperforms the other two systems, achiev-
ing an extremely high average precision of 0.95.
While the exact average precision of SRES is not
clear from the performance graphs, it appears to
be approximately 0.8. Espresso places third with
an average precision of 0.673 and 0.772 for its two
evaluation corpora.

One interesting observation is that SRES
and MBL, which construct corpora by crawling
the Web, perform significantly more well than
Espresso, which uses pre-built corpora. One pos-
sibility is that SRES and MBL are simply better-
performing systems than Espresso. However, it

is also possible that the redundancy of the in-
formation found on the Web results in better sys-
tem performance; both SRES and MBL explicitly
mention the use of redundancy in classifying rela-
tion instances. The TREC-9 and CHEM corpora
are unlikely to be as redundant as the Web. The
performance disparity certainly merits further in-
vestigation of this issue.

SRES appears to be robust. The performance
charts show a relatively smooth precision fall-off
as the number of correct extractions (and there-
fore the overall corpus size) increases. Nonethe-
less, MBL performances significantly more well
than SRES in terms of average precision. The
most obvious difference between the two sys-
tems is that MBL incorporates a feedback loop
and information from previous iterations into its
methodology, whereas SRES runs in a single pass.
Further analysis is required to determine what is
most responsible for the performance in the two
systems.

4 Conclusions and Future

Work

The analysis presented in this survey pertinent in
the context of a bootstrapped, minimally super-
vised ontology-constructing system which utilizes
active learning. Such a system would operate in
the following way:

1. Start with a gold-labeled input training set
of relations.

2. Select and extract features from the train-
ing set.

3. Train a classification model on the training
set in order to detect a set of discriminatory
features.

4. Use the features to formulate a set of queries
to submit to a corpus search engine (e.g.,
Google for the Web).

5. Perform instance extraction on the results
to obtain a set of candidate member rela-
tions of the ontology.

6. Classify the candidate relations using the
trained classification model.

9

7. Use a human resource (e.g., a single human
expert or Amazon’s Mechanical Turk ser-
vice) in order to verify the assigned labels.

8. Add the new positive labels to the training
set.

9. Repeat until a desired termination condi-
tion is met.

The general idea behind this system is that
higher-level discriminatory features would be de-
tected with repeated iterations, allowing the sys-
tem to more accurately extract members of the
desired ontology. This system is a good example
of relation extraction in the context of an iterative
feedback loop, and thus merits the investigation
of the particular relation extraction systems stud-
ied in this paper.

Though I have performed a descriptive analy-
sis of each relation extraction system and a lim-
ited comparison of each system’s performance,
further work is required in order to determine how
to best incorporate relation extraction into an ac-
tive learning system. Most important is to deter-
mine whether the performance differences of the
three systems are inherent to the methodology
which the systems utilize or are simply artifacts
of the particular corpora on which the systems
were evaluated. Beyond that, experiments which
change particular aspects of each system in or-
der to examine impact on performance would also
prove beneficial.

It is possible that a particular superposition
of these systems would yield better performance
than using any of the individual systems in iso-
lation. To best explore the space of possibili-
ties, the various phases of the relation extraction
systems could be separated into modular compo-
nents, and the Configuration Space Exploration
(CSE) framework could be applied in order to find
the best combination of components [17].

References

[1] Yarowsky, D. Unsupervised Word Sense Dis-
ambiguation Rivaling Supervised Methods.
In Proceedings of the 33rd Annual Meeting of
the Association for Computational Linguis-
tics, 1995.

[2] Zhao, S., & Grishman, R. Extracting Rela-
tions with Integrated Information Using Ker-

nel Methods. In Proceedings of ACL Confer-
ence, 2005.

[3] GuoDong, Z., Jian, S., Zhang, J., & Zhang,
M. Exploring various knowledge in relation
extraction. In Proceedings of the 43rd An-
nual Meeting on Association for Computa-
tional Linguistics, 2005.

[4] Lodhi, H., Saunders, C., Shawe-Taylor, J.,
Cristianini, N., & Watkins, C. Text Clas-
sification using String Kernels. Journal of
Machine Learning Research, vol. 2 (pp. 419-
444), 2002.

[5] Bunescu, R., & Mooney, R.J. Subsequence
Kernels for Relation Extraction. In Proceed-
ings of the 19th Conference on Neural Infor-
mation Processing Systems (NIPS), 2005.

[6] Zelenko, D., Aone, C., & Richardella, A.
Kernel Methods for Relation Extraction.
Journal of Machine Learning Research 3 (pp.
1083-1106), 2003.

[7] Culotta, A., & Sorensen, J. Dependency tree
kernels for relation extraction. In Proceedings
of the 42nd Annual Meeting on Association
for Computational Linguistics, 2004.

[8] Bunescu, R., & Mooney, R.J. A Shortest
Path Dependency Kernel for Relation Ex-
traction. In Proceedings of the Joint Con-
ference on Human Language Technology /
Empirical Methods in Natural Language Pro-
cessing (HLT/EMNLP), 2005.

[9] Pantel, P., & Pennacchiotti, M. Espresso:
Leveraging Generic Patterns for Automati-
cally Harvesting Semantic Relations. In Pro-
ceedings of Conference on Computational
Linguistics / Association for Computational
Linguistics, 2006.

[10] Rozenfeld, B., & Feldman, R. Self-supervised
relation extraction from the Web. Knowl-
edge Information Systems 17(1) (pp. 17-33),
2008.

[11] Carlson, A., Betteridge, J., Wang, R.C., Hr-
uschka Jr., E.R., & Mitchell, T.M. Coupled
Semi-Supervised Learning for Information
Extraction. In Proceedings of the Third ACM
International Conference on Web Search and
Data Mining (WSDM), 2010.

10

[12] Ravichandran, D., & Hovy, E. Learning Sur-
face Text Patterns for a Question Answering
system. In Proceedings of the 40th American
Computational Linguistics conference, 2002.

[13] Wang, R.C., & Cohen, W.W. Character-
Level Analysis of Semi-Structured Docu-
ments for Set Expansion. In Proceedings of
Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), 2009.

[14] Wang, R.C., & Cohen, W.W. Automatic Set
Instance Extraction using the Web. In Pro-
ceedings of Joint Conference of the Associa-
tion for Computational Linguistics and the
International Joint Conference on Natural
Language Processing of the Asian Federa-
tion of Natural Language Processing (ACL-
IJCNLP), 2009.

[15] Pantel, P., & Ravichandran, D. Automat-
ically Labeling Semantic Classes. In Pro-
ceedings of Human Language Technology /
North American Association for Computa-
tional Linguistics (HLT/NAACL), 2004.

[16] Etzioni, O., Cafarella, M.J., Downey, D.,
Popescu, A., Shaked, T., Soderland, S.,
Weld, D.S., & Yates, A. Unsupervised
named-entity extraction from the Web: An
experimental study. Artificial Intelligence
165(1) (pp. 91-134), 2005.

[17] Yang, Z., Garduno, E., Fang, Y., Maiberg,
A., McCormack, C., & Nyberg, E. Build-
ing Optimal Information Systems Automat-
ically: Configuration Space Exploration for
Biomedical Information Systems. In Pro-
ceedings of ACM International Conference
on Information and Knowledge Management
(CIKM), 2013.

11

