An Investigation of Active Learning Techniques for
Restaurant Recommendations

Alen Lukic
Language Technologies Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

alukic@cs.cmu.edu

Abstract

This paper investigates the use of active learning in a restaurant recommendation system.
The goal of the system is to attempt to learn the user’s preferences over time using an ensemble
of machine learning techniques. Because of time constraints, obtaining real user feedback over
a period of time proved infeasible. Instead, I perform simulated feedback experiments which
mimic a user’s incremental feedback to the system. Generally, the system performs well, but
its performance is highly dependent on how dicriminative the user’s preferences are.

1 Introduction

Recommender systems are systems which generally utilize machine learning in order to predict a user’s
preferences for items based on existing data. Such systems have varied commercial applications; one
famous example is the Netflix Prize competition, in which Netflix awarded a prize of $1,000,000 to
a team which built a recommender system superior to Netflix’s own [1].

Currently, there is no well-known commercial system for providing users with restaurant recom-
mendations. The goal of this paper is to investigate whether building such a system would be feasible
based on system performance in experiments which simulate real user feedback over time. This is a
form of active learning [2].

2 Related Work

He, et. al. explore active collaborative filtering for solving the cold start problem (that is, making
recommendations to users before having sufficient information about their preferences) [3]. In this
work the researchers actively obtain feedback from users prior to attempting to provide them with
recommendations. Boutilier, et. al. also investigate active recommender systems from the perspective
of defining information gain from user feedback observations in order to optimize computation time
[4]. Additionally, many restaurant recommender system prototypes can be found on the Internet;
Gupta and Singh’s proposed system somewhat resembles the one discussed in this paper [5].

This system bears some similarity to that of He, et. al. in that a user’s preferences are derived
by querying the user with a restaurant profile and a picture of the type of cuisine served there. The
user then indicates whether they would eat at the restaurant. This information is used in order to
provide the user with recommendations.

Because this system maintains a separate model for each user, and the training data for each user
is relatively small (even in large cities like New York, the number of possible training instances would
still be limited to the thousands), the system does not explicitly consider the information gain from

new observations, as per the work by Boutilier, et. al. The computational expense of doing so would
actually significantly outweigh any performance gain from choosing not to add an observation to the
training data, because the training data for any given user is bounded by the number of restaurants
in the user’s vicinity.

3 Methodology

3.1 Data Collection

In order to collect restaurant data, I made use of the Yelp Search API [6]. Starting with an arbitrary
restaurant address near the vicinity of downtown Pittsburgh, I queried the Yelp API in a breadth
first search-like manner; the restaurant network can be represented as a graph G = {V, E}, where
nodes Vr € V are restaurants and edges {v;,v;} € E represent connected nodes. Restaurants are
connected if one restaurant can be found by querying the API with the term "restaurant” using the
address of the other restaurant as the location, and vice-versa. Using this algorithm, I collected data
for 1,000 restaurants in Pittsburgh and the surrounding areas. Some of the businesses crawled were
not actually restaurants, but these represent a very small fraction of the data.

To collect user observations for use in experiments, I built a GUI which displayed restaurant
details to users. The user then indicated whether they would eat at this restaurant. This GUI was
deployed and used with two human subjects, each of whom cast a vote for all 1,000 restaurants.

3.2 Data Representation

The system trained an explicit model for each user’s taste preferences. The training observations
were of the following form, containing the restaurant’s average rating, number of reviews, binary
indicators of the 113 detected cuisine types, and a label indicating whether the user would eat at
this restaurant.

X = {J}r,[[‘rc, Loy .- - 71]112}7}/ = {07 1}

3.3 User Models

The Weka machine learning toolkit was used in order to efficiently explore different machine learning
models for user taste profiles [7]. Because the purpose of this system is to recommend new restaurants
to users, it is sufficient for the system to make a binary prediction about whether a particular user
would want to eat a particular restaurant. Hence, on this iteration of the system, the user models
were produced using binary classifiers. Several machine learning algorithms were explored. Weka
has built-in cross-validation and parameter-tuning functionality, which was also utilzed in order to
optimize the trained models.

4 Experiments

4.1 Simulated Feedback Experiments

Each user’s feedback data was randomly split into 80/20 train/test sets. Then, each Weka model was
trained iteratively, starting with only 10 training instances and adding one per iteration, up to the
cardinality of the training set. This procedure simulates progressively receiving user feedback over
time. The following graphs show the performance metrics of each model as the number of training
instances grows. The naive Bayes model is used as a baseline.

Metric Value

Metric Value

NaiveBayes: Simulated Feedback Performance for User O

=
==
= 7N
Bt
£ £
ptg
5

0.5}
|
04| HldM e |
0.3} |
— F1
0.1} — Weighed Precision |
—— Weighed Recall
0.0 1 1 | | 1 | 1 1
0 100 200 300 400 500 600 700 800 900
Total Training Instances

NaiveBayes: Simulated Feedback Performance for User 1

ost | [l o AR
i AR LMY - n
. At Iy T -h. Nirs A
L fg ity

0.5 _T ‘ 1
0.4 |

|
0.3} 1
0.2} 1

— Error
oal| — FL _ o .

— Weighed Precision

— Weighed Recall
0.0 1 1 1 1 | | 1

0 100 200 300 400 500 600 700 800

Total Training Instances

Metric Value

Metric Value

900

10 RandomForest: Simulated Feedback Performance for User 0
0.6 |- — Error .

— F1

— Weighed Precision
0.4 —— Weighed Recall]
0.2 H |

|
U_[] 1 1]] 1] 1 1
0 100 200 300 400 500 600 700 800
Total Training Instances

0.8 RandomForest: Simulated Feedback Performance for User 1

0.2

0.1

0.0

| — Error

— F1

| — Weighed Precision
— Weighed Recall

1 1 1
0 100 200 300

1
400

|
500

Total Training Instances

| 1
600 700

800

Metric Value

Metric Value

Bagging: Simulated Feedback Performance for User 0

1.0

0.6 — Error 1
— F1

— Weighed Precision
0.4 —— Weighed Recall i

0.21 .

0.0 1 1 I I 1 I 1 1
0 100 200 300 400 500 600 700 800 900

Total Training Instances

0.8

Bagging: Simulated Feedback Performance for User 1

0.7 1
0.6 -
0.5
0.4L

0.3}

0.2r — Error
— F1

0.1r| — Weighed Precision 1
— Weighed Recall

0.0]]] 1 I I 1
0 100 200 300 400 500 600 700 800

Total Training Instances

The following is a tabular version of the classifiers’ performance when each users’ full training set
was used. The entries are formatted as user0 / userl.

Classifier Error Rate Weighed Precision Weighed Recall F

Naive Bayes 0.392 / 0.558 | 0.623 / 0.862 0.608 / 0.442 0.587 / 0.532
Random Forest | 0.278 / 0.127 | 0.741 / 0.808 0.722 / 0.873 0.716 / 0.839
Bagging 0.282 / 0.116 | 0.743 / 0.833 0.718 / 0.884 0.708 / 0.853

4.2 Analysis

There is a noteworthy improvement in the harmonic F; mean over the baseline naive Bayes classifier
when more complex models are trained, and in general, the model metrics of the random forest and
bootstrap aggregation classifiers are superior to that of naive Bayes. Of all classifiers explored, these
two classifiers produced, on average, the best models for each of the two human users.

What is most interesting is the characteristic differences between the models produced for the
users for all classifiers. That is, generally speaking, user 1’s model tends to improve much more
than user 2’s model on a relative scale when the classifier has more training data to ingest. This is
particularly evident in the case of the bootstrap aggregation classifier, where user 0’s performance
metrics are virtually flat regardless of the number of training instances, whereas user 1’s performance
metrics improve linearly with more training data.

These results imply that no single model will be optimal for all system users. Also, the perfor-
mance of any classifier will be determined by how discriminative the user’s training data is; that is, it
will be difficult for a model to make quality predictions if a user’s preference distribution is relatively
flat. This is supported by the fact that, in this experiment, user 0 voted positively for 53% of the
restaurants, whereas user 1 voted positively only for 13% of the restaurants. User 1 was much more
discriminative.

5 Conclusions

Based on these experiments, a restaurant recommendation system which uses active learning to learn
a user’s preferences over time is feasible. Through the use of the Yelp Search API or a similar service,
it is extremely easy to collect significant amounts of quality data about restaurants in a particular
location. The results indicate that models can be trained to predict which restaurants a user will
like with both high precision and recall and an accuracy which is significantly better than chance,
despite the varying quality of models caused by discriminative differences between users.

6 Future Work

The results in this paper indicate that model selection and optimization may be a challenge. FEx-
ploring collaborative filtering rather than explicit user models may prove fruitful in addressing this
challenge. Furthermore, the quality of the results can be improved by obtaining feedback from more
users and from users in different locations. Deploying a service which utilizes this recommender
system as its back-end on a mobile platform would allow for more data collection and evaluating the
system in a real, rather than simulated, environment.

References

[1] Netflix Prize. http://en.wikipedia.org/wiki/Netflix_Prize
[2] Active learning. http://en.wikipedia.org/wiki/Active_learning_(machine_learning)

[3] He, L.; Liu, N.; & Yang, Q. Active Dual Collaborative Filtering with both Item and Attribute
Feedback. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[4] Boutilier, C.; Zemel, R.; & Marlin, B. Active Collaborative Filtering. In Proceedings of the
Nineteenth conference on Uncertainty in Artificial Intelligence, 2003.

[5] Gupta, A. & Singh, K. Location Based Personalized Recommendation System for Mobile Envi-
ronments. http://www.academia.edu/4413692/

[6] Yelp Search APL. http://www.yelp.com/developers/documentation/v2/search_api

[7] Weka. http://www.cs.waikato.ac.nz/ml/weka/

